Twitter Sentiment Analyser with Stanford NLP

This topic covers the sentiment analysis of any tweets collected from twitter and store the result in database


What is sentiment analysis ?
 
Which means the analysis done through computational to determine the given statement is positive or negative .

Where it will useful  ?


  1.  Marketing  - which find out the people feed back based product success of failure prediction
  2. Politics 
  3. People actions 
Here we are going to do the sentiment analysis with twitter

Pre required :

1. Java 1.8 - required for stanford nlp server to run
2. Tweepy - required to pull / crawl  data from the twitter 
3. Pycorennlp - required to call stanford nlp server via python

Please follow this url https://stanfordnlp.github.io/CoreNLP/corenlp-server.html to install nlp server in your local system.

We can also use third party library to find the sentiment analysis. The textblob is one of the library in python.

Authentication :
In order to fetch tweets through Twitter API, one needs to register an App through their twitter account. Follow these steps for the same:

  1. Open this link and click the button: ‘Create New App’
  2. Fill the application details. You can leave the callback url field empty.
  3. Once the app is created, you will be redirected to the app page.
  4. Open the ‘Keys and Access Tokens’ tab.
  5. Copy ‘Consumer Key’, ‘Consumer Secret’, ‘Access token’ and ‘Access Token Secret’.
After created app in twitter use that key information in the python to create authentication and the it crawl the data

After that you have to start the sentiment analysis server in your local. which has default portal localhost:9000

The below sample code for getting data from python,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""
This class provide the wrapper around tweepy to access twitter data

@author ramakavanan
"""

import tweepy

class TwitterApi(object):

    def __init__(self, auth = None, twitter_api = None):
        self._auth = auth
        self._twitter_api = twitter_api

    def authenticate(self, api_token, api_secret, customer_key, customer_secret):
        try:
            self._auth = tweepy.OAuthHandler(customer_key, customer_secret)
            self._auth.set_access_token(api_token, api_secret)
        except Exception as ex:
            print(ex)
            self._auth = None

    def twitter_api(self):
        if self._auth == None :
            raise  Exception('Authentication Object was null')
        self._twitter_api = tweepy.API(self._auth)

    def search(self, search_term, count):
        if search_term == None and self._twitter_api == None:
            raise Exception('Twitter API / Search term should not be empty')
        return self._twitter_api.search(q=search_term, count=count)

    def get_home_timeline(self, count):
        if self._twitter_api == None:
            raise Exception('Twitter API should not be empty')
        return tweepy.Cursor(self._twitter_api.home_timeline).items(count)

The sentiment analysis code is give below,


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
This class provide to ananlysis the setiment from the twitter

@author ramakavanan
"""

import json
from pycorenlp import StanfordCoreNLP
from  TwitterApi import TwitterApi
import time
import pandas as pd
import re
import chardet
from DBConnector import DBConnector
from DBManipulation import  DBManipulation
import matplotlib.pyplot as plt
import numpy as np

class SentenceAnalyzer(object):

    CONSUMER_KEY = "################"

    CONSUMER_SECRET = "######################"

    ACCESS_TOKEN = "##########"

    ACCESS_SECRET = "##########"

    CREATE_TABLE_QUERY = "CREATE TABLE sentiment_analysis(   ID INTEGER PRIMARY KEY   AUTOINCREMENT,   sentence  TEXT, sentimentValue INTEGER , sentiment TEXT )"

    INSERT_QUERY = "INSERT INTO sentiment_analysis (sentence,sentimentValue, sentiment) VALUES(?,?,?)"

    SELECT_ALL_QUERY ="SELECT * FROM sentiment_analysis"

    def __init__(self, server_host):
        if server_host == None :
            raise Exception('Stanford server not running .... ')
        self.nlp = StanfordCoreNLP(server_host)

    def analysis(self, is_table_exist, is_pandas_enabled, is_tweet_need):
        try:
            if is_tweet_need :
                tweets = self.get_tweets();
                if tweets == None:
                    raise Exception('Exception while fetching twitter data')
                if is_table_exist == False:
                    self.create_table(self.CREATE_TABLE_QUERY)

                list_data = []
                for tweet in tweets :
                    txt = self.clean_tweet(tweet.text)
                    tweet_txt = self.convert_str_utf8(txt)
                    resp = self.sentiment_analyzer(tweet_txt)
                    if resp != None :
                        for sentence in resp["sentences"]:
                            data = (str(" ".join([t["word"] for t in sentence["tokens"]])),sentence["sentimentValue"],str(sentence["sentiment"]) )
                            list_data.append(data)
                if list_data :
                    self.insert_mass_data(self.INSERT_QUERY, list_data)
            if is_pandas_enabled :
                self.pandas_analysis()
        except Exception as ex:
            print(str(ex))
            raise ex

    def create_table(self, tableString):
        connector = DBConnector('', "SentenceAnalyzer.db")
        conn = connector.create_schema()
        db_cmt = DBManipulation(conn)
        db_cmt.create_table(tableString)

    def get_all_data(self):
        connector = DBConnector('', "SentenceAnalyzer.db")
        conn = connector.create_schema()
        db_cmt = DBManipulation(conn)
        return db_cmt.select_all_data(self.SELECT_ALL_QUERY)

    def insert_mass_data(self, query, query_data):
        """ Make call to insert bulk data"""

        connector = DBConnector('', "SentenceAnalyzer.db")
        conn = connector.create_schema()
        db_cmt = DBManipulation(conn)
        db_cmt.many_insert_query_executor(query, query_data)

    def get_tweets(self):
        try:
            twitter = TwitterApi()
            twitter.authenticate(self.ACCESS_TOKEN, self.ACCESS_SECRET,
                                 self.CONSUMER_KEY, self.CONSUMER_SECRET)
            twitter.twitter_api()
            tweets = twitter.search('World Cup', 5)
            return tweets
        except Exception as ex:
            return None;

    def clean_tweet(self, tweet):
        return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t]) | (\w +:\ / \ / \S +)", " ", tweet).split())

    def convert_str_utf8(self, txt):
        if txt == None or txt == '':
            return None
        try:
            #tweet_txt = txt.decode('unicode_escape').encode('ascii','ignore')
            tweet_txt = txt.encode('ascii', 'ignore')
            return tweet_txt
        except Exception as ex:
            return None

    def sentiment_analyzer(self, tweet):
        if isinstance(tweet, str) and tweet != None :
            resp = self.nlp.annotate(tweet, properties={
                'annotators': 'sentiment',
                'outputFormat': 'json',
                'timeout': 1000,
            })
            return resp
        else:
            return None

    def pandas_analysis(self):
        connector = DBConnector('', "SentenceAnalyzer.db")
        conn = connector.create_schema()
        if conn != None :
            df = pd.io.sql.read_sql(self.SELECT_ALL_QUERY, conn)
            plt.scatter(x=df['ID'], y=df['sentimentValue'])
            #print df
            #df.plot()
            #df.groupby(['sentiment'])
            #sentiment_sum = df.pivot_table('sentimentValue', rows='sentiment', aggfunc='sum')
            #plt.figure()
            #sentiment_sum.plot(kind='barh', stacked=True, title="Sum of Sentiment value")
            #plt.figure()
            #sentiment_count = df.pivot_table('sentimentValue', rows='sentiment', aggfunc='count')
            #sentiment_count.plot(kind='barh', title="Count of Sentiment in sentence")
            plt.show()
        else :
            raise Exception("The data cant retrieved from SQLITE")

if __name__ == "__main__" :
    analyzer = SentenceAnalyzer('http://localhost:9000')
    analyzer.analysis(True, True, False)

We used the sqlite database to store the values .

Comments

  1. Nice blog!! Thanks for sharing it, it’s really helpful. I know the best blog where we are going to introduce the readers to an important field of artificial intelligence which is known as Sentiment Analysis It’s something that is used to discover an individual's beliefs, emotions, and feelings about a product or a service.

    ReplyDelete

Post a Comment

Popular posts from this blog

Pyhton auto post to blogger using Google blogger API

Connect VPN via Python

Salesforce Missing Organization Feature: CommonPortal null